Wähle deine Region

Wähle die Region, die am besten zu deinem Standort oder deinen Vorlieben passt.

Wähle deine Website-Sprache

Diese Einstellung steuert die Sprache der Benutzeroberfläche, einschließlich Schaltflächen, Menüs und aller Textinhalte der Website. Wählen Sie Ihre bevorzugte Sprache für das beste Surferlebnis.

Wähle die Sprachen für Stellenanzeigen

Wähle die Sprachen für Stellenanzeigen, die du sehen möchtest. Diese Einstellung bestimmt, welche Stellenanzeigen dir angezeigt werden.

ETH Zürich

Professor or Assistant Professor (Tenure Track) of Signal Processing and Machine Learning

2025-02-15 (Europe/Zurich)
Job sichern

Über den Arbeitgeber

ETH Zürich is well known for its excellent education, ground-breaking fundamental research and for implementing its results directly into practice.

Besuchen Sie die Arbeitgeberseite

The Department of Information Technology and Electrical Engineering (www.ee.ethz.ch) at ETH Zurich invites applications for the above-mentioned position.

The new professor is expected to focus on fundamental research in signal processing and machine learning at large. Potential focus areas include machine-learning algorithms, signal recovery and restoration, message passing, graph signal processing, coding theory and storage, adaptive filters, array processing, remote sensing, and time-frequency analysis. Moreover, the research can extend into various applications, encompassing biomedical, image, acoustic, speech, and radar signal processing. The ideal candidate also possesses an inclination toward hardware, software, and system aspects, and establishes synergies with other research areas in the Department of Information Technology and Electrical Engineering and more broadly at ETH Zurich.

The successful candidate must be committed to innovative and engaging teaching in both fundamental undergraduate-level courses and advanced graduate-level courses in the areas of signal processing and machine learning. At ETH Zurich, undergraduate-level courses are taught in German or English, and graduate-level courses are taught in English. The ability to lead a research group is expected.

Assistant professorships have been established to promote the careers of younger scientists. ETH Zurich implements a tenure track system equivalent to that of other top international universities. The level of the appointment will depend on the successful candidate's qualifications.

ETH Zurich is an equal opportunity and family-friendly employer, values diversity, and is responsive to the needs of dual-career couples.

Please apply online: http://www.facultyaffairs.ethz.ch/

Applications should include a curriculum vitae, a list of publications and projects, a statement of future research and teaching interests, a description of the leadership philosophy, three key publications, a description of the three most important achievements, and a certificate of the highest degree. The letter of application should be addressed to the President of ETH Zurich, Prof. Dr. Joël Mesot. The closing date for applications is 15 February 2025.

Jobdetails

Titel
Professor or Assistant Professor (Tenure Track) of Signal Processing and Machine Learning
Arbeitgeber
Standort
Rämistrasse 101 Zürich, Schweiz
Veröffentlicht
2024-10-24
Bewerbungsfrist
2025-02-15 23:59 (Europe/Zurich)
2025-02-15 23:59 (CET)
Job sichern

Mehr Jobs von diesem Arbeitgeber

Zeigt jobs in Englisch, Schwedisch, Norwegisch, Dänisch Einstellungen ändern

Über den Arbeitgeber

ETH Zürich is well known for its excellent education, ground-breaking fundamental research and for implementing its results directly into practice.

Besuchen Sie die Arbeitgeberseite

Das könnte Sie interessieren

...
Speeding Up DNA Analysis With String Algorithms Centrum Wiskunde & Informatica (CWI) 4 Minuten Lesezeit
...
Deciphering the Gut’s Clues to Our Health University of Turku 5 Minuten Lesezeit
...
Understanding Users to Optimise 3D Experiences Centrum Wiskunde & Informatica (CWI) 5 Minuten Lesezeit
...
Control Systems: The Key to Our Automated Future? Max Planck Institute for Software Systems (MPI-SWS) 5 Minuten Lesezeit
Mehr Stories