Välj din region

Välj den region som bäst passar din plats eller dina preferenser.

Välj ditt webbplatsspråk

Denna inställning styr språket för användargränssnittet, inklusive knappar, menyer och all text på webbplatsen. Välj ditt föredragna språk för bästa surfupplevelse.

Välj språk för jobbannonser

Välj de språk för jobbannonser du vill se. Denna inställning avgör vilka jobbannonser som visas för dig.

GSMI - Postdoc Process Mineralogy, Mineral Processing, Artificial Intelligence
Mohammed VI Polytechnic University

GSMI - Postdoc Process Mineralogy, Mineral Processing, Artificial Intelligence

Ospecifierad
Spara jobbet

Om arbetsgivaren

Mohammed VI Polytechnic University is an institution oriented towards applied research and innovation with a focus on Africa.

Besök arbetsgivarsidan

Duration: 12 months, with the possibility of renewal for an additional 12 months 

Institutions: UM6P-Benguerir/ Mineral-X - Stanford University 
Starting date: As soon as possible

We are seeking a Postdoctoral Fellowto join an exciting research project related to improving the recovery of phosphate from flotation tailings using process mineralogy. The successful candidate will have the opportunity to lead and conduct research at the intersection of process mineralogy, mineral processing, and artificial intelligence in a collaboration between Geology and Sustainable Mining Institute (UM6P, Morocco), and Mineral-X (Stanford University, USA).

 Qualifications 

  • PhD in process mineralogy, mineral processing, mining, chemical or geological engineering, or a PhD in a related field with mining/mineral processing experience.
  • Knowledge of process mineralogy, froth flotation through past research, coursework, or job experience. 
  • Proficiency in programming (Python, Julia) (provide evidence with specific examples).
  • Experience with statistical modelling and experimental design. 
  • Ability to work in a multidisciplinary team.
  • Strong written and oral communication skills. 

Context and objectives

Process mineralogy is a discipline that has recently been used for diagnosing and improving ore processing flowsheets such as flotation. It is well known that flotation performance depends on several intrinsic and extrinsic parameters. The intrinsic parameters of the process include, among others, the type of reagents, their dosages, the solid concentration, and the air flow rate. However, the extrinsic parameters include the properties of the ore to be floated, namely its particle size distribution, the degree of mineral liberation, mineral associations, and the surface properties of the minerals. In general, a mineral cannot be floated even if the processing conditions are optimized if it is locked (encapsulated). To improve flotation recovery, regardless of process parameters, it is essential to conduct a physical, chemical, and mineralogical analysis of the tailings to study the distribution of phosphates and their relationships with gangue minerals such as silicates and carbonates.

Main tasks

The selected candidate will work on:

  • Process-mineralogical characterization of the feed, concentrate, and flotation tailings.
  • Testing the effectiveness of different grinding energies on phosphate liberation within flotation tailings.
  • Developing an AI-driven intelligent framework to optimize grinding time to enhance phosphate liberation with minimum slime generation. 
  • Design of laboratory flotation tests to optimize process parameters.

How to apply?

Candidates must upload the following documents via the recruitment platform:

  • Cover letter summarizing your research interests and qualifications.
  • CV including a list of publications and research projects.
  • Contact information for 1 reference.

Ansök nu

Fyll i formuläret nedan för att ansöka om denna position.
Ladda upp CV och bilagor*

*Genom att ansöka om en tjänst som listas på Academic Positions godkänner du våra villkor och integritetspolicy.

Genom att skicka in denna ansökan samtycker du till att vi behåller dina personuppgifter för ändamål relaterade till tjänsten. Vi värdesätter din integritet och kommer att hantera din information på ett säkert sätt. Om du önskar att dina uppgifter tas bort, vänligen kontakta oss direkt.

Om tjänsten

Titel
GSMI - Postdoc Process Mineralogy, Mineral Processing, Artificial Intelligence
Plats
Lot 660, Hay Moulay Rachid Ben Guerir, Morocco Benguerir, Marocko
Publicerad
2025-07-07
Sista ansökningsdag
Ospecifierad
Befattning
Spara jobbet

Jobs from this employer

Visar jobb på Engelska, Svenska, Norska, Danska Ändra inställningar

Om arbetsgivaren

Mohammed VI Polytechnic University is an institution oriented towards applied research and innovation with a focus on Africa.

Besök arbetsgivarsidan

Intressanta artiklar

...
Bringing Artificial Intelligence Into the Real World Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) 4 min läsning
...
Exposing the Dark Side of Social Media University of Oulu 4 min läsning
...
Six Reasons to Join MBZUAI: Where Research and Innovation Meet Opportunity Mohamed bin Zayed University of Artificial Intelligence (MBZUAI) 4 min läsning
Fler stories